633 research outputs found

    Ending Laminations and Cannon-Thurston Maps

    Full text link
    In earlier work, we had shown that Cannon-Thurston maps exist for Kleinian surface groups. In this paper we prove that pre-images of points are precisely end-points of leaves of the ending lamination whenever the Cannon-Thurston map is not one-to-one. In particular, the Cannon-Thurston map is finite-to-one. This completes the proof of the conjectural picture of Cannon-Thurston maps for surface groups.Comment: v4: Final version 22pgs 2figures. Includes the main theorem of the appendix arXiv:1002.2090 by Shubhabrata Das and Mahan Mj. To appear in Geometric and Functional Analysi

    Topological phases of fermions in one dimension

    Get PDF
    In this paper we show how the classification of topological phases in insulators and superconductors is changed by interactions, in the case of 1D systems. We focus on the TR-invariant Majorana chain (BDI symmetry class). While the band classification yields an integer topological index kk, it is known that phases characterized by values of kk in the same equivalence class modulo 8 can be adiabatically transformed one to another by adding suitable interaction terms. Here we show that the eight equivalence classes are distinct and exhaustive, and provide a physical interpretation for the interacting invariant modulo 8. The different phases realize different Altland-Zirnbauer classes of the reduced density matrix for an entanglement bipartition into two half-chains. We generalize these results to the classification of all one dimensional gapped phases of fermionic systems with possible anti-unitary symmetries, utilizing the algebraic framework of central extensions. We use matrix product state methods to prove our results.Comment: 14 pages, 3 figures, v2: references adde

    Fixed subgroups are compressed in surface groups

    Get PDF
    For a compact surface Σ\Sigma (orientable or not, and with boundary or not) we show that the fixed subgroup, FixB\operatorname{Fix} B, of any family BB of endomorphisms of π1(Σ)\pi_1(\Sigma) is compressed in π1(Σ)\pi_1(\Sigma) i.e., rk((FixB)H)rk(H)\operatorname{rk}((\operatorname{Fix} B)\cap H)\leq \operatorname{rk}(H) for any subgroup FixBHπ1(Σ)\operatorname{Fix} B \leq H \leq \pi_1(\Sigma). On the way, we give a partial positive solution to the inertia conjecture, both for free and for surface groups. We also investigate direct products, GG, of finitely many free and surface groups, and give a characterization of when GG satisfies that rk(Fixϕ)rk(G)\operatorname{rk}(\operatorname{Fix} \phi) \leq \operatorname{rk}(G) for every ϕAut(G)\phi \in Aut(G)

    On abstract commensurators of groups

    Full text link
    We prove that the abstract commensurator of a nonabelian free group, an infinite surface group, or more generally of a group that splits appropriately over a cyclic subgroup, is not finitely generated. This applies in particular to all torsion-free word-hyperbolic groups with infinite outer automorphism group and abelianization of rank at least 2. We also construct a finitely generated, torsion-free group which can be mapped onto Z and which has a finitely generated commensurator.Comment: 13 pages, no figur

    Drawing bobbin lace graphs, or, Fundamental cycles for a subclass of periodic graphs

    Full text link
    In this paper, we study a class of graph drawings that arise from bobbin lace patterns. The drawings are periodic and require a combinatorial embedding with specific properties which we outline and demonstrate can be verified in linear time. In addition, a lace graph drawing has a topological requirement: it contains a set of non-contractible directed cycles which must be homotopic to (1,0)(1,0), that is, when drawn on a torus, each cycle wraps once around the minor meridian axis and zero times around the major longitude axis. We provide an algorithm for finding the two fundamental cycles of a canonical rectangular schema in a supergraph that enforces this topological constraint. The polygonal schema is then used to produce a straight-line drawing of the lace graph inside a rectangular frame. We argue that such a polygonal schema always exists for combinatorial embeddings satisfying the conditions of bobbin lace patterns, and that we can therefore create a pattern, given a graph with a fixed combinatorial embedding of genus one.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Topological Designs

    Full text link
    We give an exponential upper and a quadratic lower bound on the number of pairwise non-isotopic simple closed curves can be placed on a closed surface of genus g such that any two of the curves intersects at most once. Although the gap is large, both bounds are the best known for large genus. In genus one and two, we solve the problem exactly. Our methods generalize to variants in which the allowed number of pairwise intersections is odd, even, or bounded, and to surfaces with boundary components.Comment: 14 p., 4 Figures. To appear in Geometriae Dedicat

    Accidental parabolics and relatively hyperbolic groups

    Full text link
    By constructing, in the relative case, objects analoguous to Rips and Sela's canonical representatives, we prove that the set of images by morphisms without accidental parabolic, of a finitely presented group in a relatively hyperbolic group, is finite, up to conjugacy.Comment: Revision, 24 pages, 4 figure

    Relative Hyperbolicity, Trees of Spaces and Cannon-Thurston Maps

    Get PDF
    We prove the existence of continuous boundary extensions (Cannon-Thurston maps) for the inclusion of a vertex space into a tree of (strongly) relatively hyperbolic spaces satisfying the qi-embedded condition. This implies the same result for inclusion of vertex (or edge) subgroups in finite graphs of (strongly) relatively hyperbolic groups. This generalises a result of Bowditch for punctured surfaces in 3 manifolds and a result of Mitra for trees of hyperbolic metric spaces.Comment: 27pgs No figs, v3: final version, incorporating referee's comments, to appear in Geometriae Dedicat

    A Combination Theorem for Metric Bundles

    Full text link
    We define metric bundles/metric graph bundles which provide a purely topological/coarse-geometric generalization of the notion of trees of metric spaces a la Bestvina-Feighn in the special case that the inclusions of the edge spaces into the vertex spaces are uniform coarsely surjective quasi-isometries. We prove the existence of quasi-isometric sections in this generality. Then we prove a combination theorem for metric (graph) bundles (including exact sequences of groups) that establishes sufficient conditions, particularly flaring, under which the metric bundles are hyperbolic. We use this to give examples of surface bundles over hyperbolic disks, whose universal cover is Gromov-hyperbolic. We also show that in typical situations, flaring is also a necessary condition.Comment: v3: Major revision: 56 pages 5 figures. Many details added. Characterization of convex cocompact subgroups of mapping class groups of surfaces with punctures in terms of relative hyperbolicity given v4: Final version incorporating referee comments: 63 pages 5 figures. To appear in Geom. Funct. Ana
    corecore